Effects of Atomization Injection on Nanoparticle Processing in Suspension Plasma Spray

نویسندگان

  • Hong-bing Xiong
  • Cheng-yu Zhang
  • Kai Zhang
  • Xue-ming Shao
چکیده

Liquid atomization is applied in nanostructure dense coating technology to inject suspended nano-size powder materials into a suspension plasma spray (SPS) torch. This paper presents the effects of the atomization parameters on the nanoparticle processing. A numerical model was developed to simulate the dynamic behaviors of the suspension droplets, the solid nanoparticles or agglomerates, as well as the interactions between them and the plasma gas. The plasma gas was calculated as compressible, multi-component, turbulent jet flow in Eulerian scheme. The droplets and the solid particles were calculated as discrete Lagrangian entities, being tracked through the spray process. The motion and thermal histories of the particles were given in this paper and their release and melting status were observed. The key parameters of atomization, including droplet size, injection angle and velocity were also analyzed. The study revealed that the nanoparticle processing in SPS preferred small droplets with better atomization and less aggregation from suspension preparation. The injection angle and velocity influenced the nanoparticle release percentage. Small angle and low initial velocity might have more nanoparticles released. Besides, the melting percentage of nanoparticles and agglomerates were studied, and the critical droplet diameter to ensure solid melting was drawn. Results showed that most released nanoparticles were well melted, but the agglomerates might be totally melted, partially melted, or even not melted at all, mainly depending on the agglomerate size. For better coating quality, the suspension droplet size should be limited to a critical droplet diameter, which was inversely proportional to the cubic root of weight content, for given critical agglomerate diameter of being totally melted.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nozzleless spray cooling using surface acoustic waves

Surface acoustic wave (SAW) atomization is an attractive approach for generating monodispersed microdroplets for a diversity of applications, from drug delivery to mass spectrometry, due to its reliability, miniaturizability, and portability. Here, we demonstrate a nozzleless spray cooling technique based on SAW atomization, with the key advantage of downward scalability: increasing the operati...

متن کامل

Assessment of Atomization Models for Diesel Engine Simulations

Liquid fuel injection and atomization have a significant influence on the combustion and emission characteristics of diesel engines. Using x-ray radiography, it is possible to obtain quantitative and time-resolved data in the primary breakup region close to the injector nozzle. However, most previous studies on model validations have employed optical measurements that are not applicable in this...

متن کامل

Comprehensive Fuel Spray Modeling and Impacts on Chamber Acoustics in Combustion Dynamics Simulations

The current study focuses on comprehensive fuel spray modeling and its effects on chamber acoustics in combustion dynamics simulations. The fuel spray is modeled using an Eulerian-Lagrangian approach describing the atomizer internal flow, primary atomization, and secondary atomization processes. To anchor the fuel spray model, a series of experiments has been conducted on the fuel atomizer with...

متن کامل

Investigation of the spray characteristics for a secondary fuel injection nozzle using a digital image processing method

There are many ways to reduce diesel engine exhaust emissions. However, NOx emission is difficult to reduce because the hydrocarbon (HC) concentration in a diesel engine is not sufficient for NOx conversion. Therefore, in order to create stoichiometric conditions in the De-NOx catalyst, a secondary injection system is designed to inject liquid HC into the exhaust pipe. The atomization and distr...

متن کامل

Influence of a Coaxial Gas Flow on a Flashing Liquid Jet: Implications for Flame Spray Synthesis of Nanoparticles

Flashing or thermodynamic breakup of a liquid jet occurs when a pressurized subcooled or saturated liquid is released to a lower pressure, resulting in violent vapor nucleation, expansion, and break up of the liquid phase. Flashing is known to produce very fine droplet atomization, often not possible by traditional mechanical means. In this work, flashing atomization is introduced in a spray bu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016